New ANR Project HUSH: Human supply chain behind smart technologies

Together with sociologist Antonio A. Casilli and economist Ulrich Laitenberger, I have recently received ANR (French National Research Agency) funding for a new study of human inputs – mostly platform-mediated work in the production of artificial intelligence solutions. In our project called HUSH (Human supply chain behind smart technologies) we aim to shed light on the whole ecosystem linking platforms, workers and their clients demanding data-related and algorithmic services.

For this project, we are now looking for a

PhD researcher in digital economics

The position provides the opportunity to focus strongly on research, in a very active environment. The team has collaborations with different online platforms and has collected data sets from the web, which can be used by the applicant for their thesis. The focus of the current position is to work on the economic aspects of platform-mediated work, using quantitative analyses. Two other PhD students (in sociology) have already been recruited for this project and work on related topics.

The starting date is January 2020 (a later starting date is also possible). As per national regulations, the annual stipend will be about 1,600 euros per month, with possibility to obtain a complement for extra activities such as teaching. Social security and professional training are provided. Additional funding is available to present your research at international conferences and workshops. The position will be based at the new campus of Telecom Paris in Palaiseau, in the direct neighborhood of École Polytechnique and ENSAE.

Your profile

Applicants should have successfully completed a Master’s degree in economics, socio/economic data science or related disciplines, or expect completion at the beginning of the year 2020. They should have a strong interest in digital platforms, from the perspective of industrial organization or labor economics, and have an empirical focus (econometrics, data science). They should aim at developing programming skills and have an interest in the evaluation of internet data. Fluency in English is required; knowledge of French is advantageous, but not essential.

Telecom Paris and IP Paris

Telecom Paris is part of the newly founded Institute Polytechnique (IP) Paris, together with Ecole Polytechnique, ENSTA, ENSAE and Telecom Sud. The department of social sciences and economics (SES) at Telecom Paris studies the impact of the digitization on economic activity and society. For more information, please see https://www.telecom-paris.fr/fr/lecole/departements-enseignement-recherche/sciences-economiques-sociales/structure/economie-gestion

How to apply

Please submit a cover letter, a curriculum vitae, a transcript of records (listing all subjects taken and their grades), and contact details of one to two referees by November 15, 2019 to Ulrich Laitenberger ( laitenberger@enst.fr ).

Update: applications open until December 15, 2019.

Big data, big money: how companies thrive on informational resources

Information oils the economy – as we know since the path-breaking research of George Akerlof, Michael Spence and Joseph Stiglitz in the 1970s – and information can be extracted from data. Today, increased availability of “big” data creates the opportunity to access ever more information – for the good of the economy, then.

But in practice, how do companies extract value from this increasingly available information? In a nutshell, there are three ways in which they can do so: matching, targeted advertising, and market segmentation.

Matching is the key business idea of many recently-created companies and start-ups, and consists in helping potential parties to a transaction to find each other: driver and passenger (Uber), host and guest (Airbnb), buyer and seller (eBay), and so on. It is by processing users’ data with suitable algorithms that matching can be done, and the more detailed are the data, the more satisfactory the matching. Firms’ business model is usually based on taking a fee for each successful transaction (each realized match).

Targeted advertising is the practice of selecting, for each user, only the ads that correspond at best to their tastes or practices. Publicizing diapers to the general population will be largely ineffective as many people do not have young children; but targeting only those with young children is likely to produce better results. Here, the function of data is to help decide what to advertise to whom; useful data are people’s socio-demographic situation (age, marriage, children…), their current or past practices (if you bought diapers last week, you might do that again next week), and any declared tastes (for example as a post on Facebook or Twitter). How this produces a gain is obvious: if targeted adverts are more effective, sales will go up.

Continue reading “Big data, big money: how companies thrive on informational resources”

Are we all data laborers?

autonomyI gave today a talk at AUTONOMY, a major festival of urban mobility in Paris, where new technologies are at center stage, from driverless cars to electric scooters, bike-sharing solutions, and connected infrastructure for the smart city. I had been asked to talk about labor in digital platforms, such as those offering mobility services.

Digital platforms are often thought of in terms of automation, but it islogos clear that there is labor too: we all have in mind the example of the couriers and drivers of the “on-demand” economy. But there’s more: I’ll show how platforms involve the labor of everyone, including passengers and users of all types. By labor, I mean here human activity that produces data and information – the key source of value for platforms. It is often an implicit, invisible activity of which we may not even be aware – as we tend to focus more on consumption aspects as we talk routinely about “car pooling” or “car sharing”, rather than looking at the underlying productive effort. This is what scholars call “digital labor”.

Four eco-systems

Specialist Antonio Casilli distinguishes four forms of digital labor in platforms, and I am now going to briefly outline them.

Continue reading “Are we all data laborers?”

Data and theory: substitutes or complements? Lessons from history of economics

EEToday, my chapter on “Formalization and mathematical modelling” is published in a new series of three reference books on History of Economic Analysis (edited by G. Faccarello and H. Kurz, Edward Elgar). The chapter draws heavily on key ideas I developed as part of my thesis on the origins of mathematical economics. But this was a long time ago and reading it again today, I see it in a different light. I notice in particular that economics developed its distinctive mathematical flavour, which makes it neatly stand out relative to the other social sciences, at times in which social research was data-poor – and it did so not despite data paucity, but precisely because of it. William S. Jevons, a 19th-century forefather of the discipline who was clearly aware of the relevance of maths, wrote in 1871:

“The data are almost wholly deficient for the complete solution of any one problem”

yet:

“we have mathematical theory without the data requisite for precise calculation”

Continue reading “Data and theory: substitutes or complements? Lessons from history of economics”

Big Data redefine what “markets” are

The growth of “big data” changes the very essence of modern markets in an important sense. Big data are nothing but the digital traces of a growing number of people’s daily transactions, activities and movements, which are automatically recorded by digital devices and end up in huge amounts in the hands of companies and governments. Payments by debit and credit cards record timing, place, amount, and identity of payer and payee; supermarket loyalty cards report purchases by type, quantity, price, date; frequent traveler programs and public transport cards log users’ locations and movements; and CCTV cameras in retail centers, buses and urban streets capture details from clothing and gestures to facial expressions.

This means that all our market transactions – purchases and sales – are identifiable, and our card providers know a great deal about our economic actions. Our consumption habits (and income and tastes) may seem more opaque to scrutiny but at least to some extent, can be inferred from our locations, movements, and detail of expenses. If I buy some beer, maybe my supermarket cannot tell much about my drinking; but if I never buy any alcohol, it will have strong reasons to conclude that I am unlikely to get drunk. As data crunching techniques progress (admittedly, they are still in their infancy now), my supermarket will get better and better at gauging my habits, practices and preferences.

Continue reading “Big Data redefine what “markets” are”