Archive for the ‘ Data & methods ’ Category

Recent ethical challenges in social network analysis (RECSNA17)

Research on social networks is experiencing unprecedented growth, fuelled by the consolidation of network science and the increasing availability of data from digital networking platforms. However, it raises formidable ethical issues that often fall outside existing regulations and guidelines. New tools to collect, treat, store personal data expose both researchers and participants to specific risks. Political use and business capture of scientific results transcend standard research concerns. Legal and social ramifications of studies on personal ties and human networks surface.

We invite contributions from researchers in the social sciences, economics, management, statistics, computer science, law and philosophy, as well as other stakeholders to advance the ethical reflection in the face of new research challenges.

The workshop will take place on 5 December 2017 (full day) at MSH Paris-Saclay, with open keynote sessions to be held on 6 December 2017 (morning) at Hôtel de Lauzun, a 17th century palace in the heart of historic Île de la Cité.


  • Submit a 300-word abstract by 15 October 2017.
  • Let us know if you wish to be panel discussant or session chair by 20 October 2017 (send to:
  • Acceptance notifications will be sent by 31 October 2017.
  • Registration is free but mandatory: speakers (and discussants and chairs) should register between 15 October and 15 November 2017, other attendees by 30 November 2017.

Keynote Speakers

José Luis Molina, Autonomous University of Barcelona, “HyperEthics: A Critical Account”
Bernie Hogan, Oxford Internet Institute, “Privatising the personal network: Ethical challenges for social network site research”

Scientific Committee

Antonio A. Casilli (Telecom ParisTech, FR), Alessio D’Angelo (Middlesex University, UK), Guillaume Favre (University of Toulouse Jean-Jaurès, FR), Bernie Hogan (Oxford Internet Institute, UK), Elise Penalva-Icher (University of Paris Dauphine, FR), Louise Ryan (University of Sheffield, UK), Paola Tubaro (CNRS, FR).

Contact us

Twitter: @recsna17


Sharing Networks 2017: pen-and-paper fieldwork in a big data world

I’m excited to report that earlier this month, I ran the second wave of data collection for our Sharing Networks research project at OuiShare Fest 2017!

Publicizing the survey at OuiShare Fest 2017

To understand how people form and reinforce face-to-face network ties at such an event, I fielded a questionnaire with the help of a committed and effective team of co-researchers. It is a “name generator” asking respondents to name those they knew before the OuiShare Fest, and met again  there (“old frields”); and those they met during the event for the first time (“new contacts”). Participants then have to choose those among their “old” and “new” contacts, that they would like to contact again in future for joint projects or collaborations.

Interestingly, my good old pen-and-paper questionnaire still gives a lot of insight that digital data from social media cannot provide – just like a highly computer literate community such as this feels the need to meet physically in one place every year for a few days. Like trade fairs that flourish even more in the internet era, the OuiShare Fest gathers more participants at each edition. They meet in person there, which is why they are to be invited to respond in person too.

One part of the Sharing Networks 2017 onsite survey team.

Continue reading

Visualisation, mixed methods and social networks: what’s new

This morning, we had a plenary on “Visualisation and social networks in mixed-methods sociological research” at the British Sociological Association conference now going on in Manchester. This session, organized by the BSA study group on social networks that I convene with Alessio D’Angelo (BSA SNAG), builds on a special section of Sociological Research Online that we edited in 2016. Alessio and I chaired and had four top-flying speakers: Nick Crossley, Gemma Edwards (both at the University of Manchester), Bernie Hogan (Oxford Internet Institute) and Louise Ryan (University of Sheffield).

Each speaker briefly presented a case study that involved visualization, and all were great in conveying exciting albeit complex ideas in a short time span. What follows is a short summary of the main insight (as I saw it).

Continue reading

Science XXL: digital data and social science

I attended last week (unfortunately only part of) an interesting workshop on the effects of today’s abundance and diversity of digital data on social science practices, aptly called “Science XXL“. A variety of topics were discussed and different research experiences were shared, but I’ll just summarize here a few lessons learned that I find interesting.

  • Digital data are archive data. Data retrieved automatically from the digital traces of individual actions, such as those mined from the APIs of platforms such as Twitter, are unlike survey data in that they were not originally recorded for research purposes. The researcher must select relevant records on the basis of some understanding of the conditions under which these data were produced. Perhaps ironically, digital data share these characteristic with data from historical or literary archives.
  • Digital data are not necessarily “big”, in the sense that their volume is often small (at least in social science research so far!), even though they may share other characteristics of big data such as velocity (being generated on the fly as people use digital platforms) or variety (being little or not structured).
  • Digital data can help fill gaps in survey data, for example when survey sampling is not statistically representative: detail and volume can provide extra information that supports general conclusions.
  • Non-clean data, outliers and aberrant observations may be very informative, revealing details that would escape attention if researchers focused only on the average or center of the distribution (the normal law cherished in classical statistical approaches). Special cases are no longer a prerogative of qualitative research.
  • Data analysis is a key ingredient of “computational social science” a field that is growing in importance after an initial phase in which it was largely confined to agent-based simulation and complexity theory.

New: Paris Seminar on the Analysis of Social Processes and Structures (SPS)

Together with colleagues Gianluca Manzo, Etienne Ollion, Ivan Ermakoff, and Ivaylo Petev, I organize a new inter-institutional seminar series in sociology.

This new Social Processes and Structures (SPS) Seminar aims to take stock of the debates within the international scientific community that have repercussions for the practice of contemporary sociology, and that renew the ways in which we construct research designs, i.e., the ways in which we connect theoretical claims, data collection and methods to assess the link between data and theory. Several observations motivate this endeavor. Increasing interactions between social sciences and disciplines such as computer science, physics and biology outline new conceptual and methodological perspectives on social realities. The availability of massive data sets raises the question of the tools required to describe, visualize and model these data sets. Simulation techniques, experimental methods and counterfactual analyses modify our conceptions of causality. Crossing sociology’s disciplinary frontiers, network analysis expands its range of scales. In addition, the development of mixed methods redraws the distinction between qualitative and quantitative approaches. In light of these challenges, the SPS seminar discusses studies that, no matter their subject and disciplinary background, provide the opportunity to deepen our understanding of the relations between theory, data and methods in social sciences.

The inaugural session took place on 20 November 2016; the “regular” series starts this Friday, 27 January, and will continue until June, with one meeting per month.

All sessions take place at Maison de la Recherche, 28 rue Serpente, 75006 Paris, room D040, 5pm-7pm. All interested students and scholars are welcome, and there is no need to register in advance.

Continue reading

Special RFS issue on Big Data

Revue Française de Sociologie invites article proposals for a special issue on “Big Data, Societies and Social Sciences”, edited by Gilles Bastin (PACTE, Sciences Po Grenoble) and myself.

Focus is on two inextricably interwoven questions: how do big data transform society? How do big data affect social science practices?

Substantive as well as epistemological / methodological contributions are welcome. We are particularly interested in proposals that examine the social effects and/or the scientific implications of big data based on first-hand experience in the field.

The deadline for submission of extended abstracts is 28 February 2017; for full contributions, it is 15 September 2017. Revue Française de Sociologie accepts articles in French or English.

Further details and guidelines for submission are in the call for papers.

Data and theory: substitutes or complements? Lessons from history of economics

EEToday, my chapter on “Formalization and mathematical modelling” is published in a new series of three reference books on History of Economic Analysis (edited by G. Faccarello and H. Kurz, Edward Elgar). The chapter draws heavily on key ideas I developed as part of my thesis on the origins of mathematical economics. But this was a long time ago and reading it again today, I see it in a different light. I notice in particular that economics developed its distinctive mathematical flavour, which makes it neatly stand out relative to the other social sciences, at times in which social research was data-poor – and it did so not despite data paucity, but precisely because of it. William S. Jevons, a 19th-century forefather of the discipline who was clearly aware of the relevance of maths, wrote in 1871:

“The data are almost wholly deficient for the complete solution of any one problem”


“we have mathematical theory without the data requisite for precise calculation”

Continue reading