Posts Tagged ‘ Social network data ’

Call for papers: “Recent Ethical Challenges in Social Network Analysis”

Submissions are now invited for a special section of the journal Social Networks on “Recent Ethical Challenges in Social Network Analysis” (guest-edited by myself with Antonio A. Casilli, Alessio D’Angelo, and Louise Ryan).

Research on social networks raises formidable ethical issues that often fall outside existing regulations and guidelines. State-of-the-art tools to collect, handle, and store personal data expose both researchers and participants to new risks. Political, military and corporate interests interfere with scientific priorities and practices, while legal and social ramifications of studies of personal ties and human networks come to the surface.

The proposed special section aims to critically engage with ethics in research related to social networks, specifically addressing the challenges that recent technological, scientific, legal and political transformations trigger.

Following a successful workshop on this topic that was held in December 2017 in Paris, we welcome submissions that critically engage with ethics in research related to social networks, possibly based on reflective accounts of first-hand experiences or case studies, taken as concrete illustrations of the general principles at stake, the attitudes and behaviors of stakeholders, or the legal and institutional constraints. We are particularly interested in novel, original answers to some unprecedented ethical challenges, or the need to re­interpret norms in ambiguous situations.

The full Call for Papers is available here.

Advertisements

More than complex: large and rich network structures

I co-organize this Satellite to the NETSCI2018 Conference in Paris, 12 June 2018. We are now accepting submissions of proposals for presentations.

Information on the Satellite

In traditional research paradigms, sociology handles small but rich networks where the richness of network attributes is derived from the specific buildup of the data collection process. In the sociological approach, differences among nodes and edges are key to describe network properties and the ensuing dynamical social processes. Instead, the complex systems tradition deals with large but poor networks. Assuming statistical equivalence of graph entities, a mean field treatment serves to describe the aggregate properties of the network. Today’s network datasets contain an unprecedented quantity of relational information at all, and between all, the possible levels: individuals, social groups, political structures, economical actors, etc. We finally deal with large and rich network structures that expose the implicit limitations of the two abovementioned approaches: the traditional methods from social science cannot be upscaled because of their algorithmic complexity and those from complex systems lose track of the complex nature of the actors, their relationships and their processes. This workshop has the aim of developing an interdisciplinary reflection on how methods from social science could be upscaled to large network structures and on how methods from complex systems could be downscaled to deal with small heterogeneous structures.

We are proud that five prominent international scholars are our invited speakers: Camille Roth, SciencesPo Paris; Matthieu Latapy, LIP6UPMC Paris; Alessandro Lomi, ETH Zurich; Fariba Karimi, GESIS Cologne; Noshir Contractor, Northwestern University.

Contributions

We invite abstracts of published or unpublished work for contributed talks to take place at the satellite symposium. We expect a broad range of topics to be covered, across theory, methodology, and application to empirical data, relating to an interdisciplinary reflection on how methods from social science could be upscaled to large network structures and on how methods from complex systems could be downscaled to deal with small heterogeneous structures.

Submission can be made through our website.

Submissions are required to be at most 650 words long and should include the following information: title of the talk, author(s), affiliation(s), email address(es), name of the presenter, abstract. Papers or submissions longer than 1 page will not be accepted.

Important dates

Abstract submission deadline is March 25, 2018. Notification of acceptance will be no later than April 23, 2018.

All participants and accepted speakers will have to register through the NETSCI2018 website.

Rethinking ethics in social-network research


File 20171211 15358 w51s6s.jpg?ixlib=rb 1.1
Social links.
civilservicelocal/Pixabay

Antonio A. Casilli, Télécom ParisTech – Institut Mines-Télécom, Université Paris-Saclay et Paola Tubaro, Centre national de la recherche scientifique (CNRS)

Fueled by increasingly powerful computing and visualization tools, research on social networks is flourishing. However, it raises ethical issues that largely escape existing codes of conduct and regulatory frameworks. The economic power of large data platforms, the active participation of network members, the spectrum of mass surveillance, the effects of networking on health, the place of artificial intelligence: so many questions in search of solutions.

Social networks, what are we talking about?

The expression “social network” has become common, but those who use it to refer to social media as Facebook or Instagram often ignore its origin and its true meaning. The study of social networks precedes the advent of digital technologies. Since the 1930s, sociologists have been conducting surveys to describe the structures of relationships that unite individuals and groups: their “networks”. These include, for example, advice relationships between employees of a company, or friendship ties between students in a school. These networks can be represented as points (students) united by lines (links).

Figure 1 : a social network of friendship ties between students in a school. Circles = girls, triangles = boys, arrows = ties.
J.L. Moreno, Who shall survive? 1934.

Before any questioning on the social aspects of Facebook and Twitter, this research shed light on, for example, marital role segregation, importance of “weak ties” in job search, informal organization of firms, diffusion of innovations, formation of business elites, social support for the sick or elderly. Designers of digital platforms such as Facebook have picked up some of the analytical principles on which these works were based, developing them with the mathematical theory of graphs (though often with less attention to the social issues involved).

Early on, researchers in this field realized that the traditional principles of research ethics (focusing on informed consent of study participants and anonymization of data) were difficult to ensure. By definition, social networks research is never about a single individual, but about relationships between this individual and others  –  their friends, relatives, collaborators or professional advisors. If the latter are reported by the respondent but are not themselves included in the study, it is difficult to see how their consent could be obtained. What’s more, results can be difficult to anonymize, in that visuals are sometimes disclosive even in the absence of personal identifiers.

Ethics in the digital society: a minefield

Academics have long been thinking about these ethical difficulties, to which a special issue of the prestigious Social Networks journal was dedicated as far back as 2005. Today, researchers’ dilemmas are exacerbated by the increased availability of relational data collected and exploited by digital giants like Facebook or Google. New problems arise as the boundaries between “public” and “private” spheres become confused. To what extent do we need consent to access messages that digital service users send to their contacts, their “retweets”, or their “likes” on their friends’ walls?

These sources of information are often the property of commercial enterprises, and the algorithms they use likely bias observations. For example, can we interpret in the same way a contact created spontaneously by a user, and a contact created as a result of an automated recommendation system? In short, the data do not speak for themselves, and before thinking about their analysis, we must question the conditions of their use and the methods of their production. They largely depend on the software architectures imposed by platforms as well as their economic and technical choices. There is a real power asymmetry between platforms  –  often the property of large multinational companies  –  and researchers  –  especially those working in the public sector, and whose objectives are misaligned with investors’ priorities. Negotiations (if possible at all) are often difficult, resulting in restrictions to proprietary data access  –  particularly penalizing for public research.

Other problems arise as a researcher may even use paid crowdsourcing to produce data, using platforms like Amazon Mechanical Turk to ask large numbers of users to complete a questionnaire, or even to download their online contact lists. But these services raise numerous questions in terms of workers’ rights, working conditions and appropriation of the product of work. The resulting uncertainty hinders research that could otherwise have a positive impact on knowledge and on society at large.

Availability of online communication and publication tools, which many researchers are now seizing, increases the likelihood that research results may be diverted for political or business purposes. If the interest of military and police circles for the analysis of social networks is well known (Osama Bin Laden was allegedly located and neutralised following the application of social network analysis principles), these appropriations are more frequent today, and less easily controllable by researchers. A significant risk is the use of these principles to suppress civic and democratic movements.

Figure 2 : Simulation of the structure of an Al-Qaeda network. Courtesy of the authors.
Kouznetsov A., Tsvetovat M., Social Network Analysis for Startups, 2011

The role of the researcher

Restrictions and prohibitions would likely aggravate the constraints that already weigh on researchers, without helping them overcome these obstacles. Rather, it is important to create conditions for trust and enable researchers to explore the full extent and importance of online and offline social networks  –  allowing them to capture salient economic and social phenomena while remaining respectful of people’s rights. Researchers should take an active role, participating in the co-construction of an adequate ethical framework, grounded in their experience and self-reflective attitude. A bottom-up process involving academics as well as citizens, civil society associations, and representatives of public and private research organizations could then feed these ideas and thoughts back to regulators (such as ethics committees).

Antonio A. Casilli, Associate professor Télécom ParisTech, research fellow Centre Edgar Morin (EHESS)., Télécom ParisTech – Institut Mines-Télécom, Université Paris-Saclay et Paola Tubaro, Chargée de recherche au LRI, Laboratoire de Recherche Informatique du CNRS. Enseignante à l’ENS, Centre national de la recherche scientifique (CNRS)

La version originale de cet article a été publiée sur The Conversation.

Sharing Networks 2017: pen-and-paper fieldwork in a big data world

I’m excited to report that earlier this month, I ran the second wave of data collection for our Sharing Networks research project at OuiShare Fest 2017!

Publicizing the survey at OuiShare Fest 2017

To understand how people form and reinforce face-to-face network ties at such an event, I fielded a questionnaire with the help of a committed and effective team of co-researchers. It is a “name generator” asking respondents to name those they knew before the OuiShare Fest, and met again  there (“old frields”); and those they met during the event for the first time (“new contacts”). Participants then have to choose those among their “old” and “new” contacts, that they would like to contact again in future for joint projects or collaborations.

Interestingly, my good old pen-and-paper questionnaire still gives a lot of insight that digital data from social media cannot provide – just like a highly computer literate community such as this feels the need to meet physically in one place every year for a few days. Like trade fairs that flourish even more in the internet era, the OuiShare Fest gathers more participants at each edition. They meet in person there, which is why they are to be invited to respond in person too.

One part of the Sharing Networks 2017 onsite survey team.

Continue reading

Networks in the collaborative economy: social ties at the OuiShare Fest 2016

The OuiShare Fest brings together representatives of the international collaborative economy community. One of its goals is to expose participants to inspiring new ideas, while also offering them an opportunity for networking and building collaborative ties.

At the 2016 OuiShare Fest, we ran a study of people’s networking. Attendees, speakers and team members were asked to complete a brief questionnaire, on paper or online.Through this questionnaire, we gained information on the relationships of 445 persons – about one-third of participants.

Ties that separate: the inheritance of past relationships

For many participants, the Fest was an opportunity to catch up with others they knew before. Of these relations, half are 12 months old at most. About 40% of them were formed at work; 15% at previous OuiShare Fests or other collaborative economy experiences; 9% can be ascribed to living in the same town or neighborhood; and 7% date back to school time.

Figure 1: pre-existing ties

Figure 1 is a synthesis of these “catching-up-with-old-friends” relationships, in the shape of a network where small black dots represent people and blue lines represent social ties between them. At the center of the graph are “isolates”, participants who had no pre-existing relationship among OuiShare Fest attendees. The remaining 60% have prior connections, but form part of separate clusters. Some of them (27%) form a rather large component, visible at the top of the figure, where each member is directly or indirectly connected to anyone else in that component. There are also two medium-sized clusters of connected people at the bottom. The rest consists of many tiny sub-groups, mostly of 2-3 individuals each.

Ties that bind: new acquaintances made at the event

Participants told us that they also met new persons at the Fest. Figure 2 enriches Figure 1 by adding – in red – the new connections that people made during the event. The ties formed during the Fest connect the clusters that were separate before: now, 86% of participants are in the largest network component, meaning that any one of them can reach, directly or indirectly, 86% of the others.

Figure 2: new ties created at the event

Continue reading

Visualisation, mixed methods and social networks: what’s new

This morning, we had a plenary on “Visualisation and social networks in mixed-methods sociological research” at the British Sociological Association conference now going on in Manchester. This session, organized by the BSA study group on social networks that I convene with Alessio D’Angelo (BSA SNAG), builds on a special section of Sociological Research Online that we edited in 2016. Alessio and I chaired and had four top-flying speakers: Nick Crossley, Gemma Edwards (both at the University of Manchester), Bernie Hogan (Oxford Internet Institute) and Louise Ryan (University of Sheffield).

Each speaker briefly presented a case study that involved visualization, and all were great in conveying exciting albeit complex ideas in a short time span. What follows is a short summary of the main insight (as I saw it).

Continue reading

Advertisements