Posts Tagged ‘ Online social networks ’

Recent ethical challenges in social network analysis (RECSNA17)

Research on social networks is experiencing unprecedented growth, fuelled by the consolidation of network science and the increasing availability of data from digital networking platforms. However, it raises formidable ethical issues that often fall outside existing regulations and guidelines. New tools to collect, treat, store personal data expose both researchers and participants to specific risks. Political use and business capture of scientific results transcend standard research concerns. Legal and social ramifications of studies on personal ties and human networks surface.

We invite contributions from researchers in the social sciences, economics, management, statistics, computer science, law and philosophy, as well as other stakeholders to advance the ethical reflection in the face of new research challenges.

The workshop will take place on 5 December 2017 (full day) at MSH Paris-Saclay, with open keynote sessions to be held on 6 December 2017 (morning) at Hôtel de Lauzun, a 17th century palace in the heart of historic Île de la Cité.

Calendar:

  • Submit a 300-word abstract by 15 October 2017.
  • Let us know if you wish to be panel discussant or session chair by 20 October 2017 (send to: recsna17@msh-paris-saclay.fr).
  • Acceptance notifications will be sent by 31 October 2017.
  • Registration is free but mandatory: speakers (and discussants and chairs) should register between 15 October and 15 November 2017, other attendees by 30 November 2017.

Keynote Speakers

José Luis Molina, Autonomous University of Barcelona, “HyperEthics: A Critical Account”
Bernie Hogan, Oxford Internet Institute, “Privatising the personal network: Ethical challenges for social network site research”

Scientific Committee

Antonio A. Casilli (Telecom ParisTech, FR), Alessio D’Angelo (Middlesex University, UK), Guillaume Favre (University of Toulouse Jean-Jaurès, FR), Bernie Hogan (Oxford Internet Institute, UK), Elise Penalva-Icher (University of Paris Dauphine, FR), Louise Ryan (University of Sheffield, UK), Paola Tubaro (CNRS, FR).

Contact us

Email: recsna17@msh-paris-saclay.fr
Webpage: http://recsna17.sciencesconf.org
Twitter: @recsna17

Advertisements

Visualisation, mixed methods and social networks: what’s new

This morning, we had a plenary on “Visualisation and social networks in mixed-methods sociological research” at the British Sociological Association conference now going on in Manchester. This session, organized by the BSA study group on social networks that I convene with Alessio D’Angelo (BSA SNAG), builds on a special section of Sociological Research Online that we edited in 2016. Alessio and I chaired and had four top-flying speakers: Nick Crossley, Gemma Edwards (both at the University of Manchester), Bernie Hogan (Oxford Internet Institute) and Louise Ryan (University of Sheffield).

Each speaker briefly presented a case study that involved visualization, and all were great in conveying exciting albeit complex ideas in a short time span. What follows is a short summary of the main insight (as I saw it).

Continue reading

Online health communities: data for doctors, patients and families

Online health communities have been demonstrated to be an important part of the self-empowering experience of today’s patients. While most attention so far has been devoted to self-styled health communities, where patients autonomously share expertise and experience, today policymakers and healthcare providers are harnessing the power of this very idea and are offering similar solutions themselves.

Earlier this week at the OuiShare Fest Barcelona – a major get-together of the Spanish-speaking collaborative economy community in Europe – a few of these initiatives were presented.

keyboard-and-stethoscopeSocial Diabetes is a small company founded by and for patients, that offers a mobile app for online, real-time health monitoring services. Diabete sufferers can use it to optimally adjust their insulin dosage based on their carb count and blood sugar levels; in some cases, they can also track their exercise and patterns of behavior to receive alerts whenever relevant. Patients can share this information with their doctors, also through the app; and can discuss with other patients. This is an example of a user-based innovation where autonomous patients take the initiative, aiming to take control of their health and life. Still, physicians have been allowed in: the platform has a medical advisory board, and individual doctors can register as users to follow their patients.

Continue reading

The data of my friend are my data

The rise of digital data, particularly data from the internet, is to be understood in social relational perspective. Online interactions – from email exchanges to use of VOIP services and participation in social media such as Facebook, Twitter and LinkedIn – make people’s social connections explicit and visible. The “social network”, once a metaphor used only in a small sub-field within sociology, is now familiar to everybody as the archetype of computer-mediated social interaction. Digital devices systematically record network structures, so that social ties become an essential part of every individual profile, and users are more and more aware of them.

One consequence of this is the booming popularity of network analysis concepts, which support the algorithms that handle digital data: for example, centrality measures are at the heart of search engine functionalities, and transitivity measures found “friend-of-a-friend” algorithms in social media. In passing, social network analysis itself which had been originally developed for small-sized, non-digital datasets (like surveys about friendship in schools) has undergone a major upgrade to account for social data from the web.

FOAFMore importantly, the relational nature of digital data and the underlying possibilities to use social network analysis, open up new avenues for data collection. If user B publishes a post on, say, their Facebook wall, comments and “likes” received from their friends A, D and E will be connected to the profile of B, accessible and visible from it; in other words, it is possible to retrieve information on A, D or E through the profile of just B. In general social networks, a friend of my friend is my friend; in digital networks, the data of my friends are my data.

Continue reading

“Pro” ana? Sociability and support in eating disorder online communities

This article was first published on Discover Society, November 2014.

Last June, a group of Italian MPs proposed jail terms and fines for authors of so-called “pro-ana” (anorexia) and “pro-mia” (bulimia) websites. These are self-styled online communities on eating disorders which are viewed as promoting extreme dieting and unhealthy eating practices. France and the United Kingdom preceded Italy’s attempt to pass restrictive legislation as far back as 2008-9, and many internet service providers also endeavoured to ban these contents.

But the potential spread of health-hazardous behaviours is probably only one side of the coin, and these websites might also channel health-enhancing assistance, advice, and support (Yeshua-Katz & Martins 2013). In fact a closer look reveals that website users carefully manage their online socialisation to address their health challenges. Online social spaces enable discussion around the illness and constitute a complement, albeit an admittedly imperfect one, to formal healthcare services. There is no rejection of standard health norms in the name of some extreme ideal of thinness but rather a need – or perhaps, a cry – for extra support.

A social science approach brings out these results. The effect of web interactions on health does not only depend on website contents, but also on how people actually use them, share them, and access resources through them. The social, rather than just clinical dimension of eating disorders, recognized long before the advent of the web (Bell 1985, Orbach 1978), becomes ever more relevant in the current context and calls for a more comprehensive view of the “ana” and “mia” social universe.

SupportANAMIA(Credit: Roberto Clemente)

Continue reading

How many friends do you have?

How many people do you know? How many friends do you have? You may have tried to count your contacts on Facebook or other social networking websites. You may even have felt a bit weird realizing that your “real” friends — those you can rely on — are just a handful. As unexpected it might seem, business professionals have this question in mind too: they want to get a sense of the potentially useable social capital of their associates and employees.

Social research has investigated this matter intensely and can offer insight. There are, in fact, two aspects to be considered: the size of personal networks and the effects of online communication on socialisation.

The size of personal networks

A personal network. Hollow circles represent face-to-face contacts, filled circles represent online contacts. Green = emotionally intimate, blue = very close, yellow = close, red = not-so-close.

A personal network. Hollow circles represent face-to-face contacts, filled small circles represent online contacts, nested circles are both face-to-face and online. Green = emotionally intimate, blue = very close, yellow = close, red = not-so-close.

Let us first start with the size of personal networks. A milestone in this debate is the so-called “Dunbar’s number“, based on a 1992 study of Oxford anthropologist Robin Dunbar. The idea is that human cognitive capacities as measured by the size of the neocortex lead to a network size of around 148 (with some range of variation). The original study compared the size of the neocortex in various groups of primates and humans and referred to cohesive communities. The resulting limit indicates the number of people with whom one can maintain “stable” social relationships, i.e., know who each contact is, and how they are related to one another.

Other parts of the brain may be involved too, suggest neuroscientists: Lisa Barrett and her co-authors (2010) found a correlation between amygdala volume and social network size in humans. (I understand that the amygdala is the part of brain that regulates emotional responses and aggression, while the neocortex to which Dunbar referred is the part of the brain that presides higher mental functions.) (see this Blogpost for further information).

In social network analysis perspective, it is also important to define which social network we are measuring. Peter Marsden (1987) distinguished “core” networks from whole personal networks, pointing out that even when people have many friends, there are only a handful with whom they “can discuss important matters”. In this sense, core networks may not include more than five or six people. So if you thought you had very few friends, you shouldn’t feel weird after all… apparently the Portuguese have a saying, “You have five friends, and the rest is landscape.”

On the other hand, your full network also including mere acquaintances and weaker ties may be much larger than Dunbar’s: counts of full networks taken by Peter Killworth, H. Russel Bernard, Chris McCarthy and co-authors in the 1990s – 2000s went up to about 1500 for the average American. From these, they extracted more meaningful measures of networks that are really relevant for people’s daily lives and came up with other numbers: they found a mean personal network size of 290 (twice the Dunbar number!); more recently, Matthew Salganik and his co-authors (2010) have come up with an even larger size of 610 (twice Killworth’s number…).

Overall, an issue that emerges from many of these discussions is that cognitive capacities (however defined) matter primarily because they are associated with a basic limitation of all living beings –time is finite. Therefore, increasing the size of one’s personal network implies that less time is available for each contact: the size of the overall network increases, but the size of the core network doesn’t. Weak ties may gain at the expense of strong ties.

Continue reading

Qualitative networks

Social Network Analysis (SNA) is booming, and many think it’s because of internet networks and big data. Yet social networks themselves are not new: people have always formed ties to one another, and online platforms such as Facebook, Twitter and LinkedIn only offer channels for networked interactions to occur. Counts and fancy visualisations of myriad likes and shares do not tell the whole story either: networks are primarily about exploring how ties connect us as individuals and as organisations or groups, and how our social relationships affect our lives and behaviours.

In this sense, smaller studies can still have much to teach us. These include not only quantitative, but also qualitative approaches. “Social” networks involve a world of meanings, feelings, relationships, attractions, dependencies, which have traditionally been at the heart of qualitative research and are amenable to a mixed-methods approach.

In this perspective, with the Social Network Analysis Group of the British Sociological Association (BSA-SNAG), I am organising a one-day small conference on “Mixed Methods Approaches to Social Network Analysis”, exploring how the combination of SNA and qualitative methods can enrich and deepen our understanding of network content in conjunction with network structure. The event will take place on 12 May 2014 at Middlesex University, London, and the programme is available here; to register online (deadline 30 April!) click here.