Posts Tagged ‘ Personal networks ’

How many friends do you have?

How many people do you know? How many friends do you have? You may have tried to count your contacts on Facebook or other social networking websites. You may even have felt a bit weird realizing that your “real” friends — those you can rely on — are just a handful. As unexpected it might seem, business professionals have this question in mind too: they want to get a sense of the potentially useable social capital of their associates and employees.

Social research has investigated this matter intensely and can offer insight. There are, in fact, two aspects to be considered: the size of personal networks and the effects of online communication on socialisation.

The size of personal networks

A personal network. Hollow circles represent face-to-face contacts, filled circles represent online contacts. Green = emotionally intimate, blue = very close, yellow = close, red = not-so-close.

A personal network. Hollow circles represent face-to-face contacts, filled small circles represent online contacts, nested circles are both face-to-face and online. Green = emotionally intimate, blue = very close, yellow = close, red = not-so-close.

Let us first start with the size of personal networks. A milestone in this debate is the so-called “Dunbar’s number“, based on a 1992 study of Oxford anthropologist Robin Dunbar. The idea is that human cognitive capacities as measured by the size of the neocortex lead to a network size of around 148 (with some range of variation). The original study compared the size of the neocortex in various groups of primates and humans and referred to cohesive communities. The resulting limit indicates the number of people with whom one can maintain “stable” social relationships, i.e., know who each contact is, and how they are related to one another.

Other parts of the brain may be involved too, suggest neuroscientists: Lisa Barrett and her co-authors (2010) found a correlation between amygdala volume and social network size in humans. (I understand that the amygdala is the part of brain that regulates emotional responses and aggression, while the neocortex to which Dunbar referred is the part of the brain that presides higher mental functions.) (see this Blogpost for further information).

In social network analysis perspective, it is also important to define which social network we are measuring. Peter Marsden (1987) distinguished “core” networks from whole personal networks, pointing out that even when people have many friends, there are only a handful with whom they “can discuss important matters”. In this sense, core networks may not include more than five or six people. So if you thought you had very few friends, you shouldn’t feel weird after all… apparently the Portuguese have a saying, “You have five friends, and the rest is landscape.”

On the other hand, your full network also including mere acquaintances and weaker ties may be much larger than Dunbar’s: counts of full networks taken by Peter Killworth, H. Russel Bernard, Chris McCarthy and co-authors in the 1990s – 2000s went up to about 1500 for the average American. From these, they extracted more meaningful measures of networks that are really relevant for people’s daily lives and came up with other numbers: they found a mean personal network size of 290 (twice the Dunbar number!); more recently, Matthew Salganik and his co-authors (2010) have come up with an even larger size of 610 (twice Killworth’s number…).

Overall, an issue that emerges from many of these discussions is that cognitive capacities (however defined) matter primarily because they are associated with a basic limitation of all living beings –time is finite. Therefore, increasing the size of one’s personal network implies that less time is available for each contact: the size of the overall network increases, but the size of the core network doesn’t. Weak ties may gain at the expense of strong ties.

Continue reading

Advertisements

Qualitative networks

Social Network Analysis (SNA) is booming, and many think it’s because of internet networks and big data. Yet social networks themselves are not new: people have always formed ties to one another, and online platforms such as Facebook, Twitter and LinkedIn only offer channels for networked interactions to occur. Counts and fancy visualisations of myriad likes and shares do not tell the whole story either: networks are primarily about exploring how ties connect us as individuals and as organisations or groups, and how our social relationships affect our lives and behaviours.

In this sense, smaller studies can still have much to teach us. These include not only quantitative, but also qualitative approaches. “Social” networks involve a world of meanings, feelings, relationships, attractions, dependencies, which have traditionally been at the heart of qualitative research and are amenable to a mixed-methods approach.

In this perspective, with the Social Network Analysis Group of the British Sociological Association (BSA-SNAG), I am organising a one-day small conference on “Mixed Methods Approaches to Social Network Analysis”, exploring how the combination of SNA and qualitative methods can enrich and deepen our understanding of network content in conjunction with network structure. The event will take place on 12 May 2014 at Middlesex University, London, and the programme is available here; to register online (deadline 30 April!) click here.

The transformative powers and the politics of data visualisation: a case with personal network data

Data visualisation is still relatively uncommon in the social sciences, and is not normally expected to be part of the standard work of a scholar (contrary, some would say, to what happens in the sciences, where visualisation is sometimes necessary to figure out the properties of objects whose existence is proven, but which cannot be seen). Yet data visualisation has an extraordinary history of accomplishments even in the social realm, as cleverly documented in a forthcoming article by James Moody and Kieran Healy; and classics such as Pierre Bourdieu valued it and attempted to use it in at least some of their work, as Baptiste Coulmont interestingly reported in a blog post.

Yet the digital age offers new opportunities for data visualisation, that are largely unexploited in the social sciences. It becomes not only a tool for the researcher — to explore data prior to conducting statistical analyses, or to present results once the work is done —  but also for the general user, the study subject, the beneficiary of any policy under discussion, and the general public. As theorists in the arts and digital humanities (but not much in the social sciences, I am afraid) have noticed, the Internet and all digital infrastructures are becoming today interfaces with databases, and users of all types are immersed in a world of data in a way that was unknown before. This means that data visualisations can have new and more transformative uses, empowering study subjects and people in general, by offering them intuitive and aesthetically appealing tools to better navigate this digital world. But it also involves new dangers, as to who sets the agenda and what aspects or characteristics of the data are being stressed; data are not just objective, ‘raw’ materials but mediated ones, and the choice of how to make them perceptible by the senses is not neutral.

At the annual conference of the British Sociological Association today in Leeds, in the Methodological Innovations Stream, I am presenting data visualisation work I have done with colleagues Antonio A. Casilli, Lise Mounier and Fred Pailler, as well as data visuliaser Quentin Bréant, as part of the research project ANAMIA. We developed three tools — one for data collection, one for data exploration and preliminary analysis, one as a basis for heuristics and presentation of results. The first was for our study subjects, the second for us researchers and our colleagues, the third for us and the larger public. My slides are available:

Front

 

Small data and big models: Sunbelt 2014

Uh, it’s been a while… I should have written more regularly! All the more so as many things have happened this month, not least the publication of our book on the End-of-Privacy hypothesis. Well, I promise, I’ll catch up!

Meanwhile, a short update from St Pete Beach, FL, where the XXXIV Sunbelt conference is just about to end. This is the annual conference of the International Network for Social Network Analysis and in the last few years, I noticed some sort of tension between the (let’s call it like that — no offense!) old-school of people using data from classical sources such as surveys and fieldwork, and big data people, usually from computer science departments and very disconnected from the core of top social network analysts, mostly from the social sciences. This year, though, this tension was much less apparent, or at least I did not find it so overwhelming. There weren’t many sessions on big data this time, but a lot of progress with the old school — which in fact is renewing its range of methods and tools very fast. No more tiny descriptives of small datasets as was the case in the early days of social network analysis, but ever more powerful statistical tools allowing statistical inference (very difficult with network data — I’ll go back to that in some future post), hypothesis testing, very advanced forms of regression and survival analysis. In this sense, a highly interesting conference indeed.  We can now do theory-building and modeling of networks at a level never experienced before, and we don’t even need big data to do so.

The keynote speech by Jeff Johnson, interestingly, was focused on the contrast between big and small data. Johnson has strong ethnographic experience with small data, including in very exotic settings such as scientific research labs at the South Pole and fisheries in Alaska. He combined social network analysis techniques, sometimes using highly sophisticated mathematical tools, with fieldwork observation to gain insight into, among other things, the emergence of informal roles in communities. His key question here was, can we bring ethnographic knowing to big data? And how can we do so?

My own presentation (apart from a one-day workshop I offered on the first day, where I taught the basis of social network analysis) took place this afternoon. I realize, and I am pleased to report, that it was in line with the small-data-but-sophisticated-modeling mood of the conference. It is a work derived from our research project Anamia, using data from an online survey of persons with eating disorders to understand how the body image disturbances that affect them are related to the structure of their social networks. The data were small, because they were collected as part of a questionnaire; but the survey technique used was advanced, and the modeling strategy is quite complex. For those who are interested in the results, our slides are here:

Small Data to study the Web: The ANAMIA project

We have just published the results of our research project ANAMIA, studying the personal networks and online interactions of persons with eating disorders (“ana” and “mia” in web jargon). The report has just come out:

Documents

Report: Young internet users and eating disorder websites: beyond the notion of “pro-ana” (pdf, 92 pp, in French)

Infographic: results and recommendations of the ANAMIA project (pdf, in French)

Summary (in English!)

The ana-mia webosphere had remained opaque for long, with little data available for a science-based understanding of it. As a result, misconceptions proliferated and policy-makers hesitated — threatening censorship but without devising solutions to reach out and support a population in distress. Our study has been the first to overcome these limitations and reveal the social environment, actual eating practices and digital usages of persons with eating disorders in the English and French web.

Fig1

Visualization of the personal networks of four individuals with, respectively, EDNOS (Eating Disorders Not Otherwise Specified, top panel, left), anorexia nervosa (top, right), bulimia nervosa (bottom, left), binge eating (bottom right). Hollow circles represent their face-to-face acquaintances, filled circles their online ones. Colours indicate relational proximity to the subject (green: intimate, blue: very close, yellow: close, red: somewhat close). Source: ANAMIA project report.

Continue reading

Three tools to visualize personal networks

Data visualization techniques are enjoying ever greater popularity, notably thank to the recent boom of Big Data and our increased capacity to handle large datasets. Network data visualization techniques are no exception. in fact, appealing diagrams of social connections (sociograms) have been at the heart of the field of social network analysis since the 1930s, and have contributed a lot to its success. Today, all this is evolving at unprecedented pace.

In line with these tendencies, the research team of the project ANAMIA (a study of the networks and online sociability of persons with eating disorders, funded by the French ANR) of which I was one of the investigators, have developed new software tools for the visualization of personal network data, with different solutions for the three stages of data collection, analysis, and dissemination of results.

Specifically:

– ANAMIA EGOCENTER is a graphical version of a name generator, to be embedded in a computer-based survey to collect personal network data. It has turned out to be a user-friendly, highly effective interface for interacting and engaging with survey respondents;

Continue reading

Advertisements