Posts Tagged ‘ Big data ’

Big data, big money: how companies thrive on informational resources

Information oils the economy – as we know since the path-breaking research of George Akerlof, Michael Spence and Joseph Stiglitz in the 1970s – and information can be extracted from data. Today, increased availability of “big” data creates the opportunity to access ever more information – for the good of the economy, then.

But in practice, how do companies extract value from this increasingly available information? In a nutshell, there are three ways in which they can do so: matching, targeted advertising, and market segmentation.

Matching is the key business idea of many recently-created companies and start-ups, and consists in helping potential parties to a transaction to find each other: driver and passenger (Uber), host and guest (Airbnb), buyer and seller (eBay), and so on. It is by processing users’ data with suitable algorithms that matching can be done, and the more detailed are the data, the more satisfactory the matching. Firms’ business model is usually based on taking a fee for each successful transaction (each realized match).

Targeted advertising is the practice of selecting, for each user, only the ads that correspond at best to their tastes or practices. Publicizing diapers to the general population will be largely ineffective as many people do not have young children; but targeting only those with young children is likely to produce better results. Here, the function of data is to help decide what to advertise to whom; useful data are people’s socio-demographic situation (age, marriage, children…), their current or past practices (if you bought diapers last week, you might do that again next week), and any declared tastes (for example as a post on Facebook or Twitter). How this produces a gain is obvious: if targeted adverts are more effective, sales will go up.

Continue reading

Special RFS issue on Big Data

Revue Française de Sociologie invites article proposals for a special issue on “Big Data, Societies and Social Sciences”, edited by Gilles Bastin (PACTE, Sciences Po Grenoble) and myself.

Focus is on two inextricably interwoven questions: how do big data transform society? How do big data affect social science practices?

Substantive as well as epistemological / methodological contributions are welcome. We are particularly interested in proposals that examine the social effects and/or the scientific implications of big data based on first-hand experience in the field.

The deadline for submission of extended abstracts is 28 February 2017; for full contributions, it is 15 September 2017. Revue Française de Sociologie accepts articles in French or English.

Further details and guidelines for submission are in the call for papers.

Data, health online communities and the collaborative economy: my tour of Québec

This November gave me the opportunity to give talks and participate in scientific events throughout Québec.

comsanteI started in Montréal, with a seminar at ComSanté, the health communication research centre of Université du Québec à Montréal (UQAM), where I presented my recently published book on websites on eating disorders. While most media attention focused on controversial “pro-anorexia” contents, presented as an undesirable effect of online free speech, I made the point that this part of the webosphere is rather to be seen as a symptom of the effects of current transformations of healthcare systems under austerity policies. Cuts in public health spending encourage patients to be active, informed and equipped, but the resulting social pressure creates paradoxical behaviors and risk-taking.

Also in Montréal, I was invited to a discussion with economic journalist Diane Bérard on the growth and crisis of theecocoll collaborative economy. About 50 people attended the event, co-organised by co-working space L’Esplanade, OuiShare Montréal and the journal Les Affaires. Diane summarized the essentials of the event in a blog post just the day after, and noted six main points:

  • The Uber case dominates discussions and divides the audience – though the collaborative economy is not (just) Uber.
  • The discussion gets easily polarized – a result of the tension between commercial and non-commercial goals of the collaborative economy.
  • We still know little of the business models of these platforms and the external factors that facilitate or hinder their success.
  • Sharing is in fact a niche market – now probably declining after the first enthusiasms.
  • The key issue for the future is work – its transformations, and how it is re-organizing itself.
  • Collaborative principles advance even outside the world of digital platforms, and sometimes permeate more traditional sectors. The near future of collaboration are sharing cities.

Continue reading

Are we all data laborers?

autonomyI gave today a talk at AUTONOMY, a major festival of urban mobility in Paris, where new technologies are at center stage, from driverless cars to electric scooters, bike-sharing solutions, and connected infrastructure for the smart city. I had been asked to talk about labor in digital platforms, such as those offering mobility services.

Digital platforms are often thought of in terms of automation, but it islogos clear that there is labor too: we all have in mind the example of the couriers and drivers of the “on-demand” economy. But there’s more: I’ll show how platforms involve the labor of everyone, including passengers and users of all types. By labor, I mean here human activity that produces data and information – the key source of value for platforms. It is often an implicit, invisible activity of which we may not even be aware – as we tend to focus more on consumption aspects as we talk routinely about “car pooling” or “car sharing”, rather than looking at the underlying productive effort. This is what scholars call “digital labor”.

Four eco-systems

Specialist Antonio Casilli distinguishes four forms of digital labor in platforms, and I am now going to briefly outline them.

Continue reading

Data and theory: substitutes or complements? Lessons from history of economics

EEToday, my chapter on “Formalization and mathematical modelling” is published in a new series of three reference books on History of Economic Analysis (edited by G. Faccarello and H. Kurz, Edward Elgar). The chapter draws heavily on key ideas I developed as part of my thesis on the origins of mathematical economics. But this was a long time ago and reading it again today, I see it in a different light. I notice in particular that economics developed its distinctive mathematical flavour, which makes it neatly stand out relative to the other social sciences, at times in which social research was data-poor – and it did so not despite data paucity, but precisely because of it. William S. Jevons, a 19th-century forefather of the discipline who was clearly aware of the relevance of maths, wrote in 1871:

“The data are almost wholly deficient for the complete solution of any one problem”

yet:

“we have mathematical theory without the data requisite for precise calculation”

Continue reading

Ethical issues in research with online data

Some time ago, I wrote a post on ethical issues in research with secondary data – a somewhat grey area, where students and scholars often feel guidance is insufficient. Even more complex is research with internet data – neither primary nor secondary strictly speaking, but “big” data. A recent case fuelled an international debate on how researchers should deal with data that are, apparently, accessible to all on the web: a Danish graduate student published a large dataset of users of the online dating site OkCupid (he apparently did so without any institutional backing, and Aarhus University where he studies, is now on the case). Michael Zimmer, a specialist of information studies and the policy and ethics of online research, properly summarizes the issues in a recent Wired article:

  • Don’t say that “the data are already public”. The fact that OkCupid users knowingly share some personal information, does not mean they consent to it being used for purposes other than interactions with other users on that site. By scrapping data, one may be able to put together the whole history of  users’ presence on that platform, revealing more of their life or personality than they themselves are aware of. More dangerously, data extracted in this way might in some cases be matched with other information, thereby potentially becoming much more disclosive than what the persons concerned ever intended or agreed. And the disclosure may be aggravated by releasing the data outside the platform.

Continue reading

First steps toward “Data Inclusion”

The concept of “data inclusion” is new and still slowly seeking its way in our linguistical habits, but it is gaining ground in the minds of those who care for disadvantaged, low-income, or otherwise underserved segments of society. A recent report of the US Federal Trade Commission (FTC) does precisely this. Looking at the commercial use of big data analytics, it considers cases in which big data analytics lead companies to make choices that are detrimental to the most vulnerable segments of society, for example by excluding them from credit or from employment opportunities. Instead, it asks how big data may be used in inclusive ways.

A first set of recommendations they make is for companies to be well aware of the regulations: on financial and credit reporting, equal opportunities, consumer protection. The second set of recommendations, though specifically aimed at research done in (or for) companies, is of relevance for public research as well, and consists in asking key questions about the quality of data and models, and about the reliability and validity of results:

  • How representative is your data set? In popular discourse, big data carry a promise of exhaustivity, which however is rarely fulfilled in practice (see this great FT article by Tim Hartford). In fact, big data sets are not necessarily statistically representative of the population they refer to, and  information may be disproportionately missing about specific, possibly disadvantaged, populations.
  • Does your data model account for biases? Selection effects, which occur whenever some members of the population are less likely to be included in the sample than others, must be controlled for in order for results to be generalizable.
  • How accurate are your predictions based on big data? The issue is that most research with big data is predictive without being able to uncover the social or economic mechanisms underlying observed correlations, so that interpretation of results is potentially misleading. The report does not say, though, that recent developments in machine learning that support causality reasoning may alleviate this problem in the not-so-far future.
  • Does your reliance on big data raise ethical or fairness concerns? In all honesty, this is not specifically a question for research on big data, but for research in general. If a company’s analysis of employees’ behavior lead to solutions that involve forms of, say, racial or gender-based behavior, then that analysis shouldn’t be used – whether it’s done with “big” or “small” data.

It is important that major regulators like the FTC are taking notice. Big data open the way to major improvements in our life conditions, but not because data-driven analysis will take the lead over current best practices in research. Regulations, awareness of statistical issues and potential pitfalls, and ethics are ever more necessary for big data to fulfill their potential.